Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale

نویسندگان

  • Audrey M Michel
  • Pavel V Baranov
چکیده

Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.

Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast...

متن کامل

Genome-Wide Profiling of Alternative Translation Initiation Sites.

Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables iden...

متن کامل

Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle

Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at tran...

متن کامل

Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein

Background: The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins.Objectives: Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity,...

متن کامل

Modeling translation elongation dynamics by deep learning reveals new insights into the landscape of ribosome stalling

Translation elongation plays a central role in multiple aspects of protein biogenesis, e.g., differential expression, cotranslational folding and secretion. However, our current understanding on the regulatory mechanisms underlying translation elongation dynamics and the functional roles of ribosome stalling in protein synthesis still remains largely limited. Here, we present a deep learning-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013